Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:ref:d:8

Time Hardening model

The Time Hardening creep model is a combination of Norton-Bailey model, describing the primary phase, and Norton Model, describing the secondary phase. With the assumption of a constant temperature the model is defined by five constants: $K_1$ to $K_5.$

The creep strain is the sum of strains of both models and is defined as $$\varepsilon_c = K_1\sigma_e^{K_2}t^{K_3}+K_4\sigma_e^{K_5}t\tag{1}\label{1}$$ and the creep strain rate as $$\dot\varepsilon_c = K_1\sigma_e^{K_2}K_3t^{K_3-1}+K_4\sigma_e^{K_5}.$$

Implementation in ANSYS

In ANSYS, this model is denoted $\mathtt{TBOPT}=11.$ The creep strain is defined as $$\varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}e^{-C_4/T}}{C_3+1}+C_5\sigma_e^{C_6}te^{C_7/T}.\tag{2}\label{2}$$

If we assume a constant temperature, it is $C_4=C_7=0,$ and the equation \eqref{2} has the form $$\varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}}{C_3+1}+C_5\sigma_e^{C_6}t.\tag{3}\label{3}$$

Comparing \eqref{1} and \eqref{3} we obtain the conversion equations: \begin{align} K_1 &= C_1/(C_3+1) & C_1 &= K_1K_3\\ K_2 &= C_2 & C_2 &= K_2\\ K_3 &= C_3+1 & C_3 &= K_3-1\\ K_4 &= C_5 & C_4 &= 0\\ K_5 &= C_6 & C_5 &= K_4\\ & & C_6 &= K_5\\ & & C_7 &= 0 \end{align}

Input quantities

The Time Hardening model is activated by the parameter $\mathtt{KCRP}=4$ in the file name.iP. All materials used must be assigned to the elements using the file name.DAT. The material parameter files have the following structure:

* * Comments *

TH MODEL PMD/ANSYS

POCET DAT $N$

DATA $T_1$ $K_{11}$ $K_{21}$ $K_{31}$ $K_{41}$ $K_{51}$ $\vdots$ $T_N$ $K_{1N}$ $K_{2N}$ $K_{3N}$ $K_{4N}$ $K_{5N}$

  • The number of initial comment lines is unlimited.
  • There must be an empty line before each block.
  • The block TH MODEL contains the keyword either PMD, or ANSYS (see below).
  • The block POCET DAT contains the number of lines $N$ in the block DATA, $N\le20.$
  • The block DATA contains $N$ lines of six values $[T,K_1,K_2,K_3,K_4,K_5]$ (for model PMD), or $[T,C_1,C_2,C_3,C_5,C_6]$ (for model ANSYS). Temperatures are specified in $^\circ\text{C}.$

Example

There is only one material used in the creep problem.

name.iP
; KREST NLC NCYC KMOD KCRP KLARG KCNT
IP  1    11   1    0    4    0     0  3*0  11*2
RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000
EN
EN
name.DAT
number 1
thans.dat
thans.dat
************************************************************************
*                                                                      *
*     test example                                                     *
*                                                                      *
*     parameters   description                                         *
*                                                                      *
*     TH MODEL     identification of the Time Hardening model          *
*     PMD/ANSYS    flag specifying which coefficients are present      *
*                     T K1 K2 K3 K4 K5 - PMD                           *
*                     T C1 C2 C3 C5 C6 - ANSYS                         *
*     POCET DAT    the number of data lines (max. 20)                  *
*     DATA         6 parameters on each line                           *
*        T         temperature in deg. Celsius                         *
*        K1 - K5   model parameters                                    *
*                                                                      *
************************************************************************

TH MODEL
ANSYS

POCET DAT
2

DATA
540  1.9907955E-08   1.41564      -0.65744   5.96523E-18   5.494
560  1.9907955E-08   1.41564      -0.65744   5.96523E-18   5.494
en/ref/d/8.txt · Last modified: 2024-11-12 10:35 by Petr Pařík