Table of Contents
name.iB
Program
XRPD
Format
; program control IP KREST 0 KOUT INT3 NSAX NSTEPX KSU KSOL RP TIMS ERAL EDIF TOL DTRUN PIVAL PENAL
; optional description of independent variables IV JIV T IV V $x_1$ $x_2$ $\dots$ $x_N$
; material quantities MP ISET T 1 V $\lambda$ $\rho c$
; transient thermal resistance MP ISET T 2 V $\beta$
; nodal temperatures for the whole mesh GV ISET T 1/6 V $[T]_0$ GV ISET T 1/6 D 4 IREC
; volumetric heat source VV ISET T 6 V $\dot w$
; heat transfer SV ISET T 1/11 V $\alpha$ $T_o$ ; convection SV ISET T 2/12 V $c$ $T_o$ ; radiation SV ISET T 3/13 V $c_1$ $c_2$ $c_3$ $T_o$ ; general
; heat flux SV ISET T 4/14 V $\dot q$
; heat transfer on the semi-loof element edge LV ISET T 1/11 V $\alpha$ $T_o$ ; convection LV ISET T 2/12 V $c$ $T_o$ ; radiation LV ISET T 3/13 V $c_1$ $c_2$ $c_3$ $T_o$ ; general
; heat flux on the semi-loof element edge LV ISET T 4/14 V $\dot q$
; nodal temperature NV ISET T 1/11 V $T$ ; 1 component NV ISET T 1/11 V $T$ $\Delta T$ ; 2 components
; concentrated heat flux NV ISET T 2/12 V $\dot q$
; computation control AV ISET T 6 N KAPPR KAUTO KPRED V 4*0
; describe first load case (see the note below) AS 1
; assign MP sets ␣␣/M ISET ; mandatory default material assign to all elements ␣␣/M ISET E $[$IE$]$
; assign GV sets ␣␣/G ISET
; assign VV sets ␣␣/V ISET E $[$IE$]$
; assign SV sets ␣␣/S ISET E $[$IE$]$ S IS
; assign LV sets ␣␣/L ISET E $[$IE$]$ L IH
; assign NV sets ␣␣/N ISET N $[$IN$]$
; assign AV sets ␣␣/A ISET
; control computation ␣␣/R TIMX STEP TSC
; optional other load cases (see the note below) AS 2 /$\dots$ /$\dots$ $\vdots$
; end of input data EN EN
In the first load case, all quantities may be assigned. Quantities with $\mathtt{KQT}\le5$ are valid for all load cases. In the second and other load cases, only quantities with $\mathtt{KQT}>5$ may be assigned. Those quantities are valid only for the particular load case. If there are two $\mathtt{KQT}$ values separated by a slash, the first value is used to prescribe the quantity for all load cases while the second value is used to prescribe the quantity only for the particular load case.
Annotations
$\mathtt{KREST}$ | The key of restart. | |
---|---|---|
$=1$ | start a new computation | |
$=3$ | continue a successfully finished computation | |
$\mathtt{KOUT}$ | The key of output to the protocol. | |
$=1$ | sequence of all approximations | |
$=2$ | solution only | |
$\mathtt{INT3}$ | The number of the integration (time) step from which the computation should continue for $\mathtt{KREST}=3.$ For $\mathtt{KREST}=1$ is $\mathtt{INT3}=0.$ | |
$\mathtt{NSAX}$ | The maximum number of approximations before a new factorization of the global matrix. The recommended value is $10<\mathtt{NSAX}<20.$ | |
$\mathtt{NSTEPX}$ | The maximum number of time steps (for the automatic setting of the time step length). | |
$\mathtt{KSU}$ | The key of the problem type. | |
$=0$ | transient problem | |
$=1$ | steady-state problem | |
$\mathtt{KSOL}$ | The key of the linear solution method. | |
$=1$ | frontal direct solver (default) | |
$=2$ | parallel sparse direct solver | |
$\mathtt{TIMS}$ | The time from which the computation starts $[\text{s}].$ For $\mathtt{KSU}=1$ or $\mathtt{KREST}=3$ is $\mathtt{TIMS}=0.$ | |
$\mathtt{ERAL}$ | The convergence criterion for the residue, $||\operatorname{Res}\mathbf{T}^{(i)}||<\mathtt{ERAL}\cdot||\mathbf{T}^{(i)}||.$ Doporučeno $10^{-5}<\mathtt{ERAL}<10^{-2}.$ Applies for $\mathtt{KAPPR}=1$ only. | |
$\mathtt{EDIF}$ | The convergence criterion for the temperature increment $[^\circ\text{C}],$ $||\mathbf{T}^{(i)}-\mathbf{T}^{(i-1)}||_\text{MAX}<\mathtt{EDIF}.$ The recommended value is $1<\mathtt{EDIF}<5.$ Applies for $\mathtt{KAPPR}=1$ only. | |
$\mathtt{TOL}$ | The error tolerance in a single time step $[^\circ\text{C}].$ It is used for automatic setting of the step length for $\mathtt{KAUTO}=1$ only. The recommended value is $1<\mathtt{TOL}<10.$ | |
$\mathtt{DTRUN}$ | The elementary time step $[\text{s}].$ The length of the real time step is rounded to the integer multiple of $\mathtt{DTRUN}.$ Applies only for $\mathtt{DTRUN}>10^{-6}.$ | |
$\mathtt{PIVAL}$ | The minimum value of pivot in the matrix factorization. The default value is $10^{-6}.$ | |
$\mathtt{PENAL}$ | The value of penalty function for connector elements of all types. The default value is $10^6.$ | |
$c$ | Specific heat capacity $[\text{J}/\text{kgK}],$ specified as the product $\rho c.$ | |
$c$ | The heat radiation coefficient $[\text{W}/\text{m}^2\text{K}^4]$ for calculating the heat flow as $\dot q=c(T^4-T_o^4).$ | |
$c_1$ | The general heat transfer coefficient $[\text{W}/\text{m}^2\text{K}^{c_2+c_3}]$ for calculating the heat flow as $\dot q=c_1\left(T^{c_2}-T_o^{c_2}\right)^{c_3}.$ | |
$c_2$ | The general heat transfer coefficient $[1].$ | |
$c_3$ | The general heat transfer coefficient $[1].$ | |
$[\mathtt{IE}]$ | The list of element numbers. | |
$\mathtt{IH}$ | The local number of element’s edge. | |
$[\mathtt{IN}]$ | The list of node numbers. | |
$\mathtt{IREC}$ | The number of the record in the binary file name.TEM renamed to name.TIC . |
|
$\mathtt{IS}$ | The local number of element’s surface. | |
$\mathtt{ISET}$ | The identification number of the data set. | |
$\mathtt{IV}$ | The identification number of the variable. | |
$\mathtt{JIV}$ | The number of the IV batch. |
|
$\mathtt{KAPPR}$ | The key of successive approximations. | |
$=0$ | without the use of the iterative method | |
$=1$ | with iterations controlled by criteria $\mathtt{ERAL}$ and $\mathtt{EDIF}$ (recommended) | |
$\mathtt{KAUTO}$ | The key of automatic step setting. | |
$=0$ | user control | |
$=1$ | automatic control (recommended) | |
$\mathtt{KPRED}$ | The key of thermophysical properties prediction. | |
$=0$ | without prediction | |
$=1$ | with prediction (may speed up the solution, recommended for $\mathtt{KAUTO}=1$) | |
$\mathtt{KQT}$ | The identification number of the quantity. | |
$\dot q$ | The heat flow $[\text{W}/\text{m}^2].$ | |
$\dot q$ | The concentrated heat flow $[\text{W}].$ | |
$\mathtt{STEP}$ | The length of the integration step $[\text{s}].$ For automatic step length control ($\mathtt{KAUTO}=1$) is $\mathtt{STEP}$ the length of the first step. | |
$T$ | The nodal temperature $[^\circ\text{C}].$ | |
$\Delta T$ | The temperature difference between the top and bottom surface of the semi-loof element $[^\circ\text{C}].$ | |
$[T]_0$ | The global temperature field. The number of components (the length of the vector) must be equal to the number of degrees of freedom of the mesh exactly. If there are only 1-DOF nodes in the mesh the number of degrees of freedom is identical to the number of mesh nodes. | |
$T_o$ | The environment temperature $[^\circ\text{C}].$ | |
$\mathtt{TIMX}$ | The end of the time section $[\text{s}].$ | |
$\mathtt{TSC}$ | The constant of the integration method, $0\le\mathtt{TSC}\le1.$ $\mathtt{TSC}=0$ corresponds to the explicit method, $\mathtt{TSC}=1$ represents the fully implicit schema (recommended). | |
$\dot w$ | The power of the heat source $[\text{W}/\text{m}^3].$ | |
$x_i$ | The discrete values of the independent variable. | |
$\alpha$ | The heat transfer coefficient $[\text{W}/\text{m}^2\text{K}]$ for calculating the heat flow as $\dot q=\alpha(T-T_o).$ | |
$\beta$ | The heat resistance coefficient $[\text{W}/\text{m}^2\text{K}]$ for calculating the heat flow as $\dot q=\beta\Delta T.$ | |
$\lambda$ | The thermal conductivity $[\text{W}/\text{mK}].$ | |
$\rho$ | The density $[\text{kg}/\text{m}^3],$ specified as the product $\rho c.$ | |
$\rho c$ | The specific heat capacity per unit of volume $[\text{J}/\text{m}^3\text{K}].$ |