en:ref:name:ir
Table of Contents
name.iR
Program
HFRO
Format
; program control IP 0 KDAMP RP PIVAL SHIFT TSTEP
; end of input data EN EN
Annotations
$\mathtt{KDAMP}$ | The key of dumping. | |
---|---|---|
$=0$ | no dumping | |
$=1$ | include dumping (the dumping matrices are read from the binary file name.AMP ) |
|
$\mathtt{PIVAL}$ | The minimum allowed pivot value. The default value is $10^{-6}.$ | |
$\mathtt{SHIFT}$ | In the eigenproblem solution of a free (or insufficiently supported) body, it is advisable to choose the value of $\mathtt{SHIFT}$ close to the smallest nonzero eigenvalue; if it is not known, then choose $\mathtt{SHIFT}\approx10^4.$ | |
$\mathtt{TSTEP}$ | The integration step of the Newmark metod $[\text{s}].$ |
The program works as follows:
- If $\mathtt{SHIFT}>0,$ the program automatically sets $\mathtt{TSTEP}=\mathtt{KDAMP}=0$ and factorizes the matrix $\sum(\mathbf{K}+\mathtt{SHIFT}\cdot\mathbf{M}).$ It is assumed that this matrix is regular and can be factorized without any pivoting.
- If $\mathtt{TSTEP}>0,$ the program determines $a_0,$ $a_1$ and factorizes the positive-definite matrix $\sum(\mathbf{K}+a_0\mathbf{M}+a_1\mathbf{C}).$
en/ref/name/ir.txt · Last modified: 2024-11-11 13:05 by Petr Pařík