Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:ref:d:7

Norton-Bailey model

The Norton-Bailey creep model describes the primary phase. With the assumption of a constant temperature the model is defined by three constants: $K,$ $n,$ and $m.$

The creep strain is defined as $$\varepsilon_c = K\sigma_e^nt^m\tag{1}\label{1}$$ and the creep strain rate as $$\dot\varepsilon_c = K\sigma_e^nmt^{m-1}.\tag{2}\label{2}$$

Implementation in ANSYS

In ANSYS, this model is denoted $\mathtt{TBOPT}=2$ (“time hardening”) or $\mathtt{TBOPT}=6$ (“modified time hardening”). For the former, the creep strain rate is defined as $$\dot\varepsilon_c = C_1\sigma_e^{C_2}t^{C_3}e^{-C_4/T}\tag{3}\label{3}$$ and for the latter, the creep strain is defined as $$\varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}e^{-C_4/T}}{C_3+1}.\tag{4}\label{4}$$ The constants $C_1$ to $C_4$ in both equations are the same.

If we assume a constant temperature, it is $C_4=0$ and the equations \eqref{3} and \eqref{4} have the form $$\dot\varepsilon_c = C_1\sigma_e^{C_2}t^{C_3} \quad\text{and}\quad \varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}}{C_3+1}.\tag{5}\label{5}$$ Comparing \eqref{1} and \eqref{2} to \eqref{5} we obtain the conversion relations: \begin{align} K &= C_1/(C_3+1) & C_1 &= Km\\ n &= C_2 & C_2 &= n\\ m &= C_3+1 & C_3 &= m-1\\ & & C_4 &= 0 \end{align}

Input quantitites

The Norton-Bailey model is activated by the parameter $\mathtt{KCRP}=3$ in the file name.iP. All materials used must be assigned to the elements using the file name.DAT. The material parameter files have the following structure:

* * Comments *

NB MODEL PMD/ANSYS

POCET DAT $N$

DATA - T K N M $T_1$ $K_1$ $n_1$ $m_1$ $\vdots$ $T_N$ $K_N$ $n_N$ $m_N$

  • The number of initial comment lines is unlimited.
  • There must be an empty line before each block.
  • The block NB MODEL contains the keyword either PMD, or ANSYS (see below).
  • The block POCET DAT contains the number of lines $N$ in the block DATA, $N\le30.$
  • The block DATA - T K N M contains $N$ lines of four values $[T,K,n,m]$ (for model PMD), or $[T,C_1,C_2,C_3]$ (for model ANSYS). Temperatures are specified in $^\circ\text{C}.$

Example

There is only one material used in the creep problem.

name.iP
; KREST NLC NCYC KMOD KCRP KLARG KCNT
IP  1    11   1    0    3    0     0  3*0  11*2
RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000
EN
EN
name.DAT
number 1
nbpmd.dat
nbpmd.dat
************************************************************************
*                                                                      *
*     test example                                                     *
*                                                                      *
*     parameters   description                                         *
*                                                                      *
*     NB MODEL     identification of the Norton-Bailey model           *
*     PMD/ANSYS    flag specifying which coefficients are present      *
*                     T K N M    - PMD                                 *
*                     T C1 C2 C3 - ANSYS                               *
*     POCET DAT    the number of data lines (max. 30)                  *
*     DATA         4 parameters on each line                           *
*        T         temperature in deg. Celsius                         *
*        K         model parameter                                     *
*        N         model parameter                                     *
*        M         model parameter                                     *
*                                                                      *
************************************************************************

NB MODEL
PMD

POCET DAT
5

DATA
570 3.02676E-13 4.3128 0.3633
580 6.2959E-14  4.5927 0.4204
590 9.45498E-15 4.9251 0.4922
600 7.00039E-16 5.3745 0.5907
610 2.168E-17   5.9644 0.7260
en/ref/d/7.txt · Last modified: 2024-11-12 10:35 by Petr Pařík