Table of Contents
Norton-Bailey model
The Norton-Bailey creep model describes the primary phase. With the assumption of a constant temperature the model is defined by three constants: $K,$ $n,$ and $m.$
The creep strain is defined as $$\varepsilon_c = K\sigma_e^nt^m\tag{1}\label{1}$$ and the creep strain rate as $$\dot\varepsilon_c = K\sigma_e^nmt^{m-1}.\tag{2}\label{2}$$
Implementation in ANSYS
In ANSYS, this model is denoted $\mathtt{TBOPT}=2$ (“time hardening”) or $\mathtt{TBOPT}=6$ (“modified time hardening”). For the former, the creep strain rate is defined as $$\dot\varepsilon_c = C_1\sigma_e^{C_2}t^{C_3}e^{-C_4/T}\tag{3}\label{3}$$ and for the latter, the creep strain is defined as $$\varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}e^{-C_4/T}}{C_3+1}.\tag{4}\label{4}$$ The constants $C_1$ to $C_4$ in both equations are the same.
If we assume a constant temperature, it is $C_4=0$ and the equations \eqref{3} and \eqref{4} have the form $$\dot\varepsilon_c = C_1\sigma_e^{C_2}t^{C_3} \quad\text{and}\quad \varepsilon_c = \frac{C_1\sigma_e^{C_2}t^{C_3+1}}{C_3+1}.\tag{5}\label{5}$$ Comparing \eqref{1} and \eqref{2} to \eqref{5} we obtain the conversion relations: \begin{align} K &= C_1/(C_3+1) & C_1 &= Km\\ n &= C_2 & C_2 &= n\\ m &= C_3+1 & C_3 &= m-1\\ & & C_4 &= 0 \end{align}
Input quantitites
The Norton-Bailey model is activated by the parameter $\mathtt{KCRP}=3$ in the file name.iP
.
All materials used must be assigned to the elements using the file name.DAT
.
The material parameter files have the following structure:
* * Comments *
NB MODEL PMD/ANSYS
POCET DAT $N$
DATA - T K N M $T_1$ $K_1$ $n_1$ $m_1$ $\vdots$ $T_N$ $K_N$ $n_N$ $m_N$
- The number of initial comment lines is unlimited.
- There must be an empty line before each block.
- The block
NB MODEL
contains the keyword either PMD, or ANSYS (see below). - The block
POCET DAT
contains the number of lines $N$ in the blockDATA
, $N\le30.$ - The block
DATA - T K N M
contains $N$ lines of four values $[T,K,n,m]$ (for modelPMD
), or $[T,C_1,C_2,C_3]$ (for modelANSYS
). Temperatures are specified in $^\circ\text{C}.$
Example
There is only one material used in the creep problem.
- name.iP
; KREST NLC NCYC KMOD KCRP KLARG KCNT IP 1 11 1 0 3 0 0 3*0 11*2 RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000 EN EN
- name.DAT
number 1 nbpmd.dat
- nbpmd.dat
************************************************************************ * * * test example * * * * parameters description * * * * NB MODEL identification of the Norton-Bailey model * * PMD/ANSYS flag specifying which coefficients are present * * T K N M - PMD * * T C1 C2 C3 - ANSYS * * POCET DAT the number of data lines (max. 30) * * DATA 4 parameters on each line * * T temperature in deg. Celsius * * K model parameter * * N model parameter * * M model parameter * * * ************************************************************************ NB MODEL PMD POCET DAT 5 DATA 570 3.02676E-13 4.3128 0.3633 580 6.2959E-14 4.5927 0.4204 590 9.45498E-15 4.9251 0.4922 600 7.00039E-16 5.3745 0.5907 610 2.168E-17 5.9644 0.7260