Table of Contents
Dependencies of quantities
Constant quantity
A constant quantity $[v_1,v_2,\dots,v_N]$ is entered by the batch
XY ISET T KQT V $v_1$ $v_2$ $\dots$ $v_N$
where
XY
are the set key letters,- $\mathtt{ISET}$ is the set index number,
- $\mathtt{KQT}$ is the quantity identification number.
Polynomial dependency
Consider a quantity $[v_1,v_2,\dots,v_N]$ where each component is a polynomial $$v_1=P_1(x_1,x_2,x_3,x_4),v_2=P_2(x_1,x_2,x_3,x_4),\dots,v_N=P_N(x_1,x_2,x_3,x_4),$$ with $x_1,x_2,x_3,x_4$ being independent variables.
Allowed polynomial forms are: \begin{align} P(x_1) &= a_1 + a_2 x_1 + a_3 x_1^2 + a_4 x_1^3 \\[1mm] P(x_1,x_2) &= a_1 + a_2 x_1 + a_3 x_2 + a_4 x_1^2 + a_5 x_2^2 + a_6 x_1 x_2 + a_7 x_1^3 + a_8 x_2^3 + {} \\& + a_9 x_1^2 x_2 + a_{10} x_1 x_2^2 \\[1mm] P(x_1,x_2,x_3) &= a_1 + a_2 x_1 + a_3 x_2 + a_4 x_3 + a_5 x_1^2 + a_6 x_2^2 + a_7 x_3^2 + a_8 x_1 x_2 + {} \\& + a_9 x_1 x_3 + a_{10} x_2 x_3 + a_{11} x_1^3 + a_{12} x_2^3 + a_{13} x_3^3 + a_{14} x_1^2 x_2 {} \\& + a_{15} x_1^2 x_3 + a_{16} x_2^2 x_1 + + a_{17} x_2^2 x_3 \\[1mm] P(x_1,x_2,x_3,x_4) &= a_1 + a_2 x_1 + a_3 x_2 + a_4 x_3 + a_5 x_4+ a_6 x_1^2 + a_7 x_2^2 + a_8 x_3^2 + {} \\& + a_9 x_4^2 + a_{10} x_1 x_2 + a_{11} x_1 x_3 + a_{12} x_1 x_4 + a_{13} x_2 x_3 + a_{14} x_2 x_4 + {} \\& + a_{15} x_3 x_4 + a_{16} x_1^3 + a_{17} x_2^3 + a_{18} x_3^3 + a_{19} x_4^3 \end{align} Each component $v_n$ is thus represented by the coefficient vector $[a]_n.$
The quantity $[v_1,v_2,\dots,v_N]$ is entered by the batch
XY ISET T -KQT I [IV] V $[a]_1$ $\dots$ V $[a]_N$
where
XY
are the set key letters,- $\mathtt{ISET}$ is the set index number,
- $\mathtt{KQT}$ is the quantity identification number (entered with a minus sign),
- $[\mathtt{IV}]$ is the list of variable identification numbers specifying variables $x_1,x_2,x_3,x_4.$
Tabulated dependency
Consider a quantity $[v_1,v_2,\dots,v_N]$ where each component is a function $$v_1=v_1(x_1,x_2,x_3,x_4),v_2=v_2(x_1,x_2,x_3,x_4),\dots,v_N=v_N(x_1,x_2,x_3,x_4).$$ Assume that a vector of discrete values $[x]_1,$ $[x]_2,$ $[x]_3,$ $[x]_4$ is given for each independent variable and the function values are known at the points $$v_n^{ijkl}=v_n(x_1^i,x_2^j,x_3^k,x_4^l).$$ The function values $v_n^{ijkl}$ can be assembled into vectors $$[v]_n\equiv[v_n^{1111},v_n^{1112},v_n^{1113},\dots,v_n^{1121},v_n^{1122},v_n^{1123},\dots ].$$
First, the values of the independent variables $[x]_\mathtt{IV}$ are entered by batches
IV JIV T IV V $[x]_\mathtt{IV}$
where
- $\mathtt{JIV}$ is the
IV
batch number, - $\mathtt{IV}$ is the variable identification number.
The quantity $[v_1,v_2,\dots,v_N]$ is entered by the batch
XY ISET T KQT I [JIV] V $[v]_1$ $\dots$ V $[v]_N$
where
XY
are the set key letters,- $\mathtt{ISET}$ is the set index number,
- $\mathtt{KQT}$ is the quantity identification number,
- $[\mathtt{JIV}]$ are the
IV
batch numbers specifying the kind and order of variables $x_1,x_2,x_3,x_4.$
The dependent variable for an argument outside the range specified by the IV
batch is replaced by its value for the closest defined argument (extrapolation by constant). A similar rule applies in the case of dependence on multiple arguments.