Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:example:stat:1:1

Quadrilaterals, BEAM6S1

Problem

Mesh

element type nodes
1 6 1 3 4 2 12 14 13 11
2 6 3 5 6 4 15 17 16 14
3 6 5 7 8 6 18 20 19 17
4 6 7 9 10 8 21 23 22 20

Boundary conditions

$u=0$ at nodes 2, 11
$u=v=0$ at node 1

Solution

The end force is replaced with the equivalent surface traction $$\begin{align} q_x&=\frac{20000}{0.01\times0.02}=100\times10^6\text{ Pa}, \\ q_y&=-0.1\times10^6\text{ Pa}. \end{align}$$ Similarly, the distributed loading is replaced with $$q_n|_\text{S3}=\frac{l_y}{0.01}=-0.01\times10^6\text{ Pa},$$ where the normal surface traction $q_n$ acts on the top areas $0.25\times0.01\text{ m}^2$ (face S3) of elements.

beam6s1.bat
rmd2 beam6s1.i1
rpd2 beam6s1.i2
srh2 beam6s1.i3
fefs beam6s1.i4
str2 beam6s1.i5

Input

beam6s1.i1
;  NELEM NNOD ITED  ...  KSS
IP   4    23    6   6*0  -1
;  CRIT SCALE THDEF
RP 1.01   1    0.01
XY N 1:10 X 2*0 2*0.25 2*0.5 2*0.75 2*1
          Y 5*(0 0.02)
EL E 1:4 N =A 1 3 4 2 =A =B 12 14 13 11 =B
           =2A =3B =4A =6B =6A =9B
EN
EN
beam6s1.i2
;  KREST
IP   1
         ; E    α ν   ρ
MP 1 T 1 V 2e11 0 0.3 0
SV 1 T 9 V 100e6 -0.1e6 0 ; Fx = 20000 N, Fy = -20 N
SV 2 T 6 V -0.01e6        ; ly = -100 N/m

AS 1 /M 1
  /B 0 N 1 /B 0 C 1 N 2 11
  /S 1 E 4   S2
  /S 2 E 1:4 S3

EN
EN
beam6s1.i3
;  KREST
IP   1
EN
EN
beam6s1.i4
;  KREST
IP   1
EN
EN
beam6s1.i5
;  KLC 0 KOUT ILC  ...  KPROB KGRAF
IP  1  0   1   0   6*0    0     2
EN
EN

Output

beam6s1.o5
;  KLC 0 KOUT ILC  ...  KPROB KGRAF                                             
IP  1  0   1   0   6*0    0     2                                               
EN                                                                              
EN                                                                              

      PLANE STRESS
                                                      1TH LOAD CASE

                                       DISPLACEMENTS
           NODE                U                   V
                              [m]                 [m]

              1       0.0000000E+00    0.0000000E+00
              2       0.0000000E+00   -0.3019974E-05
              3       0.2038337E-04   -0.1317942E-02
              4       0.2296356E-03   -0.1320945E-02
              5       0.8460987E-04   -0.4701293E-02
              6       0.4154152E-03   -0.4704294E-02
              7       0.1818417E-03   -0.9189014E-02
              8       0.5681875E-03   -0.9192015E-02
              9       0.3000180E-03   -0.1410675E-01
             10       0.7000150E-03   -0.1410975E-01
             11       0.0000000E+00   -0.8181496E-06
             12       0.9690531E-05   -0.3320718E-03
             13       0.1153345E-03   -0.3350697E-03
             14       0.1250095E-03   -0.1318934E-02
             15       0.5208838E-04   -0.2819743E-02
             16       0.3229360E-03   -0.2822743E-02
             17       0.2500126E-03   -0.4702546E-02
             18       0.1329441E-03   -0.6858423E-02
             19       0.4920834E-03   -0.6861423E-02
             20       0.3750146E-03   -0.9190425E-02
             21       0.2407731E-03   -0.1162660E-01
             22       0.6342581E-03   -0.1162960E-01
             23       0.5000165E-03   -0.1410823E-01

                                             REACTIONS
           NODE               RX                  RY
                             [N]                 [N]

              1       0.1710232E+03    0.1200000E+03
              2      -0.6828977E+04    0.0000000E+00
             11      -0.1334205E+05    0.0000000E+00



                                                 EQUILIBRIUM OF FORCES AND REACTIONS

                                                     SUM OF FORCES [N]             SUM OF REACTIONS [N]


                              DIR. X:                       20000.00                     -20000.00
                              DIR. Y:                        -120.00                        120.00





                                           STRESSES AT GAUSS POINTS



      IE       IGP     XG           YG                   SIG-X     SIG-Y    SIG-XY     SIG-Z
                       [m]          [m]                  [MPa]     [MPa]     [MPa]     [MPa]

       1
                 1    0.52831E-01  0.42265E-02            51.3       0.4      -0.6       0.0
                 2    0.19717E+00  0.42265E-02            51.7      -1.8      -0.5       0.0
                 3    0.52831E-01  0.15774E-01           148.7      -0.5      -0.6       0.0
                 4    0.19717E+00  0.15774E-01           148.3       1.9      -0.5       0.0

       2
                 1    0.30283E+00  0.42265E-02            72.1       2.1      -0.4       0.0
                 2    0.44717E+00  0.42265E-02            71.9      -1.4      -0.4       0.0
                 3    0.30283E+00  0.15774E-01           127.9      -2.1      -0.4       0.0
                 4    0.44717E+00  0.15774E-01           128.1       1.4      -0.4       0.0

       3
                 1    0.55283E+00  0.42265E-02            87.2       1.1      -0.3       0.0
                 2    0.69717E+00  0.42265E-02            87.2      -1.0      -0.3       0.0
                 3    0.55283E+00  0.15774E-01           112.8      -1.1      -0.3       0.0
                 4    0.69717E+00  0.15774E-01           112.8       1.0      -0.3       0.0

       4
                 1    0.80283E+00  0.42265E-02            96.9       0.8      -0.2       0.0
                 2    0.94717E+00  0.42265E-02            97.0      -0.2      -0.1       0.0
                 3    0.80283E+00  0.15774E-01           103.1      -0.8      -0.2       0.0
                 4    0.94717E+00  0.15774E-01           103.0       0.2      -0.1       0.0

                                * END OF STR3 *
 TOTAL CPU: 00:00:00
en/example/stat/1/1.txt · Last modified: 2022-03-15 08:41 by Petr Pařík