Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:example:plas:9:start

Non-proportional stress ratcheting

by Dr. René Marek

Problem description

Consider the rod shown subjected to cyclic non-proportional loading. Compute elastic-plastic response using directional-distortional hardening.

Material properties

$E=2.1\times10^5\text{ MPa},$ $\nu=0.3.$ Feigenbaum–Dafalias directional-distortional hardening model, type $\alpha$ with constant $c.$

$k_0\text{ [MPa]}$ $150$
$\kappa_1\text{ [MPa]}$ $10~000$
$\kappa_2\text{ [1/MPa]}$ $0.008$
$a_1\text{ [MPa]}$ $50~000$
$a_2\text{ [1/MPa]}$ $0.01$
$c\text{ [1/MPa]}$ $0.008$

Support

Clamped at $x=0, y=0.$ Sliding at $y=0.$ Statically determinate.

Loading

$\sigma_{xx}=(+400\text{ MPa}, -300\text{ MPa}),$ 2.5 cycles. Preload to $\sigma_{xx}=300\text{ MPa}$ and hold. $\sigma_{xy}=\pm150\text{ MPa},$ 2.5 cycles.

Solution

Analytical solution of the proportional part and precise numerical solution of the second non-proportional part with $\mathtt{NSUB}=1000$ and $\mathtt{NINT}=5000$ are shown below.

$\sigma_{xx}$ $\sigma_{xy}$ $k$ $\alpha_{11}$ $\alpha_{12}$ $\varepsilon_{11}\times10^3$ $\varepsilon_{12}\times10^3$ $\varepsilon_p\times10^3$
$0$ $0$ $150$ $0$ $0$ $0$ $0$ $0$
$+400$ $0$ $144.067$ $76.129$ $0$ $6.3040$ $0$ $4.3992$
$-300$ $0$ $141.627$ $-57.350$ $0$ $-0.0842$ $0$ $7.4541$
$+400$ $0$ $136.528$ $78.246$ $0$ $9.3069$ $0$ $13.5119$
$-300$ $0$ $134.933$ $-59.953$ $0$ $2.7119$ $0$ $16.7736$
$+400$ $0$ $131.387$ $79.669$ $0$ $13.0175$ $0$ $23.7459$
$+300$ $0$ $131.387$ $79.669$ $0$ $12.5413$ $0$ $23.7459$
$+300$ $+150$ $129.67$ $60.92$ $44.58$ $15.42$ $2.179$ $27.84$
$+300$ $-150$ $127.91$ $61.13$ $-45.00$ $20.48$ $-1.382$ $34.28$
$+300$ $+150$ $126.75$ $61.27$ $45.28$ $25.89$ $2.283$ $41.14$
$+300$ $-150$ $126.02$ $61.36$ $-45.46$ $31.58$ $-1.465$ $48.34$
$+300$ $+150$ $125.58$ $61.41$ $45.56$ $37.45$ $2.343$ $55.78$

Loading path and subsequent yield surfaces on the $\sigma$–$\tau$ diagram are shown below.

Loading path and subsequent yield surfaces on the $\varepsilon$–$\gamma$ diagram are shown below.

Stress-strain characteristics with softening of the isotropic part $k$ is shown below.

en/example/plas/9/start.txt · Last modified: 2022-02-11 14:25 by Petr Pařík