Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:example:plas:4:start

Kinematic hardening

by Dr. Jiří Plešek

Problem description

Consider the rod shown subjected to cyclic loading. Compute elastic-plastic response using linear kinematic hardening.

See also Isotropic hardening, Cyclic hardening and Cyclic softening.

Material properties

$E=2\times10^5\text{ MPa},$ $\nu=0.3.$ Prandtl–Reuss–von Mises model with linear kinematic hardening.

$\varepsilon_p$ $0.000$ $0.015$ $0.040$
$\sigma_Y\text{ [MPa]}$ $350$ $650$ $1150$
$Q_Y\text{ [MPa]}$ $0$ $300$ $800$

Support

Clamped at $x=0.$ Statically determinate.

Loading

$\sigma_{xx}=\pm400\text{ MPa},$ 3 cycles.

Solution

For detailed explanation see Isotropic hardening. The plastic modulus $E_p$ is computed as $$E_p=\frac{650-350}{0.015}=\frac{1150-350}{0.04}=2\times10^4\text{ MPa}.$$

Reloading the bar to 350 MPa the hysteresis loop closes and the cycle will stabilize.

$\sigma_{xx}$ $\Delta\sigma$ $\varepsilon_p$ $H$ $\sigma_{Yc}$ $\sigma_{Yt}$
$0$ $0$ $0$ $350$ $-350$ $350$
$+400$ $50$ $2.5\times10^{-3}$ $350$ $-300$ $400$
$-400$ $100$ $7.5\times10^{-3}$ $350$ $-400$ $300$
$+400$ $100$ $12.5\times10^{-3}$ $350$ $-300$ $400$
$-400$ $100$ $17.5\times10^{-3}$ $350$ $-400$ $300$
$+400$ $100$ $22.5\times10^{-3}$ $350$ $-300$ $400$
$-400$ $100$ $27.5\times10^{-3}$ $350$ $-400$ $300$

en/example/plas/4/start.txt · Last modified: 2022-02-11 14:25 by Petr Pařík