Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools



by Dr. Jiří Plešek

Problem description

Consider the rod shown subjected to uniaxial stress and thermal loadings. Compute elastic-plastic response using isotropic nonlinear hardening with temperature-dependent yield stress.

Material properties

$E=2\times10^5\text{ MPa},$ $\nu=0.3,$ $\alpha=10^{-5}\text{ 1/K}.$ Prandtl–Reuss–von Mises model with isotropic hardening.

Initial yield stress $\sigma_Y^0$ varies linearly with temperature.


Clamped at $x=0.$ Statically determinate.


$\sigma_{xx}=300\text{ MPa},$ $T_0=0\text{ $^\circ$C},$ $T=200\text{ $^\circ$C}.$


The yielding function satisfying the data given in figures can be expressed in a polynomial form as $$\sigma_Y(\varepsilon_p,T)=a_1+a_2\varepsilon_p+a_3T+a_4\varepsilon_p^2+a_6\varepsilon_pT+a_9\varepsilon_p^2T$$ where $$\begin{align} a_1 &= 3.5\times10^8\text{ Pa} & a_4 &= -1.0\times10^{14}\text{ Pa} \\ a_2 &= 2.0\times10^{11}\text{ Pa} & a_5 &= 1.0\times10^9\text{ Pa/K} \\ a_3 &= -5.0\times10^5\text{ Pa/K} & a_6 &= -5.0\times10^{11}\text{ Pa/K} \\ \end{align}.$$

Loading is prescribed as a series:

  1. Initially $\sigma_{xx}=0,$ $T=0.$
  2. Increase stress to $\sigma_{xx}=300$ at constant temperature $T=0.$ The material remains in an elastic state. Total strain $\varepsilon=\varepsilon^e=1.5\times10^{-3}.$
  3. Heating from $T=0$ to $T=200$ under constant stress $\sigma_{xx}=300.$ The initial yield stress reduces to $\sigma_Y^0=250.$ Then $\sigma_{xx}>\sigma_Y^0$ and material starts to yield until $\varepsilon_p=0.134\times10^{-3}$ when the yield stress will harden to $\sigma_Y(\varepsilon_p,T)=300.$ Total strain $\varepsilon=\varepsilon^e+\varepsilon^p+\varepsilon^0=3.634\times10^{-3}.$
  4. Return to state 2. $\sigma_{xx}=300,$ $T=0.$ Total strain $\varepsilon=\varepsilon^e+\varepsilon^p=1.634\times10^{-3}.$

Numerical computation gives $\varepsilon_p=0.135\times10^{-3}.$ A more precise result can be achieved by changing the default value $\mathtt{NINT}=10$ to $\mathtt{NINT}=100$ on the IP line in the .iL input file.

en/example/plas/8/start.txt · Last modified: 2022-02-11 14:25 by Petr Pařík