Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:example:dyn:3:3

Response spectrum, BEAM53D4

Problem

Mesh

element type nodes
1 53 1 2
2 53 2 3
3 53 3 4
4 53 4 5

Boundary conditions

$u=v=w=\varphi_x=\varphi_y=\varphi_z=0$ at node 1

Computation

The only input for the response spectrum method is the set of spectral accelerations corresponding to the loading and damping given. Let us denote the base acceleration as $$a(t)=\ddot W(t)=-\omega^2 W_0\sin\omega t.$$ A characteristic equation of the linear harmonic oscillator $(\omega_k,\xi_k)$ exited kinematically by $W(t)$ has the form $$\ddot x_k(t)+2\xi_k\omega_k\dot x_k(t)+\omega_k^2x_k(t)=-a(t)$$ with the solution $$x_k(t)=A_ke^{-\xi_k\omega_k t}\sin(\bar\omega_k t+\varphi_k)+x_{pk}(t),$$ where $A_k,$ $\varphi_k$ are constants to be determined from the initial conditions $$x_k(0)=\dot x_k(0)=0$$ and $\bar\omega_k$ is the damped angular frequency $$\bar\omega_k=\omega_k\sqrt{1-\xi_k^2}.$$ Global acceleration can be computed as $$g_k(t)=a(t)+\ddot x_k(t)$$ and its maximum $$G_k=\max_t\vert g_k(t)\vert=G_k(\omega_k,\xi_k)$$ which is also called the spectral acceleration. Thus, it is sufficient for us to calculate $G_k$ as functions of $(\omega_k,\xi_k)$ for the base acceleration $a(t)$ defined above. In this particular example we make use of the steady-state part of the solution only, which yields $$\begin{align} G_k&\simeq\max\limits_t\vert a(t)+x_{pk}(t)\vert\le\max\limits_t\vert x_{pk}(t)\vert \\ &=\omega^2W_0+\omega^4W_0\left[(\omega_k^2-\omega^2)^2 + 4(\xi_k\omega_k\omega)^2\right]^{-\frac{1}{2}}. \end{align}$$ Substituting for $\omega_k=2\pi f_k$ with $f_k$ read from the table shown in Natural frequencies for the beam element we finally obtain

$k$ 1 2 3 4 5 6 7 8 9 10
$G_k\text{ [m/s}^2\text{]}$ $0.8787$ $0.7045$ $0.6647$ $0.6615$ $0.6610$ $0.6606$ $0.6606$ $0.6605$ $0.6605$ $0.6605$

Note that the FEM results are related to the reference frame that moves with the basis. For example, the total $z$-displacement must be calculated as $$w_p=W_0+w_\text{FEM}.$$

The computation is executed with the following commands:

beam53d4.bat
rmd3 beam53d4.i1
rpd3 beam53d4.i2
srh3 beam53d4.i3
fefs beam53d4.i4
hmot beam53d4.iM
heig beam53d4.iE
hmod beam53d3.iD

Input

beam53d4.i1
;  NELEM NNOD ITED
IP   4     5   53
;  CRIT SCALE ...
RP 1.01   1   8*0
 ; default values of cross-sectional characteristics
 ; A    Ik              Wk                Ieta
   2e-4 6.6666666666e-9 6.666666666666e-7 1.66666666666e-9
 ; Weta             Izeta               Wzeta              Px Py Pz
   3.33333333333e-7 6.66666666666666e-9 6.666666666666e-7  0  1  0
XY N 1:5 X 5*0:1 Y 5*0 Z 5*0
EL E 1:4 N 1 2  2 3  3 4  4 5
EN
EN
beam53d4.i2
;  KREST
IP   1
         ; E    α ν   ρ
MP 1 T 1 V 2e11 0 0.3 7800
AS 1 /M 1 /B 0 N 1
EN
EN
beam53d4.i3
;  KREST
IP   1
EN
EN
beam53d4.i4
;  KREST
IP   1
EN
EN
beam53d4.iM
;  KDIAG KPRIN
IP   1     0
EN
EN
beam53d4.iE
;  KREST NROOT NITERX KTPR KEVP
IP   1     10     0     0    0
EN
EN
beam53d4.iD
;  KOUT KDUMP KPRIN KKIN
IP   3    0     0     2
;  TEND DT
RP   0   0

VC 1 T 1 R
  ; spectrum acceleration
  ; x-direction
  10*0
  ; y-direction
  10*0
  ; z-direction
  0.8787 0.7045 0.6647 0.6615 0.6610 2*0.6606 3*0.6605

; spectrum acceleration
AS 3 T 1   I 1 12

EN
EN

Output

beam53d4.oD
;  KOUT KDUMP KPRIN KKIN                                                        
IP   3    0     0     2                                                         
;  TEND DT                                                                      
RP   0   0                                                                      
                                                                                
VC 1 T 1 R                                                                      
  ; spectrum acceleration                                                       
  ; x-direction                                                                 
  10*0                                                                          
  ; y-direction                                                                 
  10*0                                                                          
  ; z-direction                                                                 
  0.8787 0.7045 0.6647 0.6615 0.6610 2*0.6606 3*0.6605                          
                                                                                
; spectrum acceleration                                                         
AS 3 T 1   I 1 12                                                               
                                                                                
EN                                                                              
EN                                                                              


                    MODAL PARTICIPATION FACTORS [kg] - 'X'

  0.2002E-38  0.5551E-38  0.5239E-38  0.5665E-33  0.9904E-30  0.9592E-23
  0.2227E-23  0.8465E-17  0.1207E-16  0.9923E-12

              PERCENTAGE OF TOTAL MASS:  0 % out of 0.1560E+01 [kg]


                    MODAL PARTICIPATION FACTORS [kg] - 'Y'

  0.2823E-41  0.9564E+00  0.2957E-26  0.2936E+00  0.4488E-30  0.3117E-23
  0.1003E+00  0.2976E-17  0.4685E-01  0.3613E-12

              PERCENTAGE OF TOTAL MASS: 89 % out of 0.1560E+01 [kg]


                    MODAL PARTICIPATION FACTORS [kg] - 'Z'

  0.9564E+00  0.1221E-32  0.2936E+00  0.2141E-37  0.1003E+00  0.4685E-01
  0.9472E-26  0.2412E-01  0.2538E-19  0.2188E-14

              PERCENTAGE OF TOTAL MASS: 91 % out of 0.1560E+01 [kg]


                            SUM OF REACTIONS
  0.1360399253716155E-07  0.7245274126714700E-09  0.8594264947846466E+00


                                REACTIONS
     1   0.13604E-007   0.72453E-009   0.85943E+000
     2   0.00000E+000   0.00000E+000   0.00000E+000
     3   0.00000E+000   0.00000E+000   0.00000E+000
     4   0.00000E+000   0.00000E+000   0.00000E+000
     5   0.00000E+000   0.00000E+000   0.00000E+000


                    AMPLITUDE OF THE STATIONARY SOLUTION


                    TIME T =  0.000000E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.00000E+000
     2   0.85025E-016   0.13088E-015   0.50732E-004
     3   0.64571E-016   0.46235E-016   0.17691E-003
     4   0.35215E-016   0.18208E-015   0.34264E-003
     5   0.91148E-016   0.37150E-015   0.52095E-003

                   VELOCITY
     1   0.00000E+000   0.00000E+000   0.00000E+000
     2   0.28354E-012   0.43880E-012   0.27252E-002
     3   0.21533E-012   0.15661E-012   0.91805E-002
     4   0.11744E-012   0.60927E-012   0.17614E-001
     5   0.30396E-012   0.12421E-011   0.26837E-001

                   ACCELERATION
     1   0.00000E+000   0.00000E+000   0.00000E+000
     2   0.94556E-009   0.14717E-008   0.40866E+000
     3   0.71809E-009   0.53094E-009   0.64583E+000
     4   0.39163E-009   0.20393E-008   0.94195E+000
     5   0.10137E-008   0.41540E-008   0.15573E+001

                                * END OF HMOD *
 TOTAL CPU: 00:00:00
en/example/dyn/3/3.txt · Last modified: 2024-11-07 09:29 by Petr Pařík