Package for Machine Design

Finite Element Analysis in Structural Mechanics

User Tools

Site Tools


en:example:dyn:3:2

Direct integration, BEAM53D3

Problem

Mesh

element type nodes
1 53 1 2
2 53 2 3
3 53 3 4
4 53 4 5

Boundary conditions

$u=v=w=\varphi_x=\varphi_y=\varphi_z=0$ at node 1

Computation

In this example, an appropriate time step for the Newmark method can be best derived from the first natural period $T_1$ (see Natural frequencies) as $$\mathtt{TSTEP}=T_1/16=7.640428\times10^{-3}\text{ s}$$ and the end-time must be chosen sufficiently large so that the transient response will diminish. We have shown in Transient response that the amplitude of the transient part would decay exponentially $$\frac{w(\mathbf{x},5T_1)}{w(\mathbf{x},0)}=e^{-10\pi\xi_1}=0.0432,$$ thus, we set $\mathtt{TEND}=5T_1=0.611\text{ s}$ and round it up to an integer multiple of the time step $$\mathtt{TEND}=80\times\mathtt{TSTEP}=0.61123424\text{ s}.$$ The most difficult task is to propose the damping matrix which must be formed explicitly. We can use the Rayleight damping matrix $$\mathbf{C}=\alpha\mathbf{K}+\beta\mathbf{M}$$ or if transformed to the modal basis $$2\omega_k\xi_k=\alpha\omega_k^2+\beta\quad\text{for}\quad k=1,2,\ldots.$$ Obviously, the equations cannot be solved uniquely as we have only two free parameters. We know, however, that the response will presumably consist of bending modes, therefore, we select the first and third equation corresponding to bending in the $x$-$y$ plane $$\begin{align} 2\omega_1\xi_1 &= \alpha\omega_1^2+\beta \\ 2\omega_3\xi_3 &= \alpha\omega_3^2+\beta \end{align}$$ from which $$\alpha=5.3495239\times10^{-4}\text{ s},\quad \beta=8.8663179\text{ s}^{-1}$$ Conversely, the actual values of the modal damping parameters introduced by Rayleigh's matrix are shown in table below.

$k$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$\xi_k$ $0.10$ $0.07$ $0.10$ $0.18$ $0.25$ $0.48$ $0.49$ $0.89$ $0.96$ $1.20$

Higher modes are heavily damped, for $k\ge10$ the damping being even overcritical. The participation of these modes, however, should not play an important role.

The computation is executed with the following commands:

beam53d3.bat
rmd3 beam53d3.i1
rpd3 beam53d3.i2
srh3 beam53d3.i3
hmot beam53d3.iM
hcre beam53d3.iC
hfro beam53d3.iR
hnew beam53d3.iW

Input

beam53d3.i1
;  NELEM NNOD ITED
IP   4     5   53
;  CRIT SCALE ...
RP 1.01   1   8*0
 ; default values of cross-sectional characteristics
 ; A    Ik              Wk                Ieta
   2e-4 6.6666666666e-9 6.666666666666e-7 1.66666666666e-9
 ; Weta             Izeta               Wzeta              Px Py Pz
   3.33333333333e-7 6.66666666666666e-9 6.666666666666e-7  0  1  0
XY N 1:5 X 5*0:1 Y 5*0 Z 5*0
EL E 1:4 N 1 2  2 3  3 4  4 5
EN
EN
beam53d3.i2
;  KREST
IP   1
         ; E    α ν   ρ
MP 1 T 1 V 2e11 0 0.3 7800
AS 1 /M 1 /B 0 N 1
EN
EN
beam53d3.i3
;  KREST
IP   1
EN
EN
beam53d3.iM
;  KDIAG KPRIN
IP   1     0
EN
EN
beam53d3.iC
;  NVEC
IP   0
;  ALPHA        BETA
RP 5.3495239E-4 8.8663179
EN
EN
beam53d3.iR
;  0 KDAMP
IP 0   1
;  PIVOT SHIFT TSTEP
RP  100    0   7.640428e-3
EN
EN
beam53d3.iW
;  KOUT KDUMP KPRIN KKIN KREST KGRAF
IP   1    0     0     1    1     0
;  TEND
RP 0.61123424

VC 1 T 1
  ; directional vector
  R 0 0 1 0 0 0 4*(6*0)
  ; amplitude
  R 0.001
  ; ang. frequency
  R 25.698761
  ; output times
  R 17*0.48898739:0.61123424

; use the first term of Fourier's series
RS 2 T 1 I 1 0

; direction, amplitude, frequency, times
AS 3 T 1   I 1 3   I 2 5   I 3 6   I 4 9

EN
EN

Output

beam53d3.oW
;  KOUT KDUMP KPRIN KKIN KREST KGRAF                                            
IP   1    0     0     1    1     0                                              
;  TEND                                                                         
RP 0.61123424                                                                   
                                                                                
VC 1 T 1                                                                        
  ; directional vector                                                          
  R 0 0 1 0 0 0 4*(6*0)                                                         
  ; amplitude                                                                   
  R 0.001                                                                       
  ; ang. frequency                                                              
  R 25.698761                                                                   
  ; output times                                                                
  R 17*0.48898739:0.61123424                                                    
                                                                                
; use the first term of Fourier's series                                        
RS 2 T 1 I 1 0                                                                  
                                                                                
; direction, amplitude, frequency, times                                        
AS 3 T 1   I 1 3   I 2 5   I 3 6   I 4 9                                        
                                                                                
EN                                                                              
EN                                                                              

                    RIGHT-HAND SIDE ASSIGNED
                    DAMPING INCLUDED


 ----------------------------- INFORMATION -----------------------------

          CHOSEN TIME STEP TSTEP   :    0.7640E-02 [s]
          FINISHING TIME TEND      :    0.6112E+00 [s]
 ------------------------------------------------------------------------


                    TIME T =  0.488987E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000  -0.49534E-009
     2   0.00000E+000   0.00000E+000  -0.19499E-004
     3   0.00000E+000   0.00000E+000  -0.65921E-004
     4   0.00000E+000   0.00000E+000  -0.12509E-003
     5   0.00000E+000   0.00000E+000  -0.18791E-003


                    TIME T =  0.496628E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.19509E-003
     2   0.00000E+000   0.00000E+000   0.18284E-003
     3   0.00000E+000   0.00000E+000   0.15315E-003
     4   0.00000E+000   0.00000E+000   0.11511E-003
     5   0.00000E+000   0.00000E+000   0.74565E-004


                    TIME T =  0.504268E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.38268E-003
     2   0.00000E+000   0.00000E+000   0.37811E-003
     3   0.00000E+000   0.00000E+000   0.36648E-003
     4   0.00000E+000   0.00000E+000   0.35079E-003
     5   0.00000E+000   0.00000E+000   0.33377E-003


                    TIME T =  0.511909E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.55557E-003
     2   0.00000E+000   0.00000E+000   0.55916E-003
     3   0.00000E+000   0.00000E+000   0.56660E-003
     4   0.00000E+000   0.00000E+000   0.57516E-003
     5   0.00000E+000   0.00000E+000   0.58382E-003


                    TIME T =  0.519549E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.70711E-003
     2   0.00000E+000   0.00000E+000   0.71924E-003
     3   0.00000E+000   0.00000E+000   0.74716E-003
     4   0.00000E+000   0.00000E+000   0.78159E-003
     5   0.00000E+000   0.00000E+000   0.81770E-003


                    TIME T =  0.527190E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.83147E-003
     2   0.00000E+000   0.00000E+000   0.85262E-003
     3   0.00000E+000   0.00000E+000   0.90178E-003
     4   0.00000E+000   0.00000E+000   0.96324E-003
     5   0.00000E+000   0.00000E+000   0.10280E-002


                    TIME T =  0.534830E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.92388E-003
     2   0.00000E+000   0.00000E+000   0.95397E-003
     3   0.00000E+000   0.00000E+000   0.10247E-002
     4   0.00000E+000   0.00000E+000   0.11135E-002
     5   0.00000E+000   0.00000E+000   0.12073E-002


                    TIME T =  0.542470E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.98079E-003
     2   0.00000E+000   0.00000E+000   0.10194E-002
     3   0.00000E+000   0.00000E+000   0.11106E-002
     4   0.00000E+000   0.00000E+000   0.12260E-002
     5   0.00000E+000   0.00000E+000   0.13482E-002


                    TIME T =  0.550111E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.10000E-002
     2   0.00000E+000   0.00000E+000   0.10462E-002
     3   0.00000E+000   0.00000E+000   0.11561E-002
     4   0.00000E+000   0.00000E+000   0.12954E-002
     5   0.00000E+000   0.00000E+000   0.14430E-002


                    TIME T =  0.557751E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.98079E-003
     2   0.00000E+000   0.00000E+000   0.10333E-002
     3   0.00000E+000   0.00000E+000   0.11582E-002
     4   0.00000E+000   0.00000E+000   0.13171E-002
     5   0.00000E+000   0.00000E+000   0.14857E-002


                    TIME T =  0.565392E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.92388E-003
     2   0.00000E+000   0.00000E+000   0.98058E-003
     3   0.00000E+000   0.00000E+000   0.11161E-002
     4   0.00000E+000   0.00000E+000   0.12887E-002
     5   0.00000E+000   0.00000E+000   0.14720E-002


                    TIME T =  0.573032E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.83147E-003
     2   0.00000E+000   0.00000E+000   0.89002E-003
     3   0.00000E+000   0.00000E+000   0.10302E-002
     4   0.00000E+000   0.00000E+000   0.12092E-002
     5   0.00000E+000   0.00000E+000   0.13996E-002


                    TIME T =  0.580673E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.70711E-003
     2   0.00000E+000   0.00000E+000   0.76481E-003
     3   0.00000E+000   0.00000E+000   0.90337E-003
     4   0.00000E+000   0.00000E+000   0.10805E-002
     5   0.00000E+000   0.00000E+000   0.12689E-002


                    TIME T =  0.588313E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.55557E-003
     2   0.00000E+000   0.00000E+000   0.60971E-003
     3   0.00000E+000   0.00000E+000   0.73979E-003
     4   0.00000E+000   0.00000E+000   0.90640E-003
     5   0.00000E+000   0.00000E+000   0.10837E-002


                    TIME T =  0.595953E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.38268E-003
     2   0.00000E+000   0.00000E+000   0.43047E-003
     3   0.00000E+000   0.00000E+000   0.54568E-003
     4   0.00000E+000   0.00000E+000   0.69338E-003
     5   0.00000E+000   0.00000E+000   0.85072E-003


                    TIME T =  0.603594E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.19509E-003
     2   0.00000E+000   0.00000E+000   0.23421E-003
     3   0.00000E+000   0.00000E+000   0.32858E-003
     4   0.00000E+000   0.00000E+000   0.44986E-003
     5   0.00000E+000   0.00000E+000   0.57914E-003


                    TIME T =  0.611234E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.61917E-009
     2   0.00000E+000   0.00000E+000   0.28453E-004
     3   0.00000E+000   0.00000E+000   0.97400E-004
     4   0.00000E+000   0.00000E+000   0.18608E-003
     5   0.00000E+000   0.00000E+000   0.28068E-003

                                * END OF HNEW *
 TOTAL CPU: 00:00:00
en/example/dyn/3/2.txt · Last modified: 2024-11-07 09:28 by Petr Pařík