HDYN
; program control IP KMET KOUT 2*0 NINT KTPR NGD RP 3*0 PENAL TSTEP BETA
; optional first kind of initial conditions IC ISET T KQT R $[X]_0$
; optional second kind of initial conditions IC ISET T KQT I IREC
; optional third kind of initial conditions IC ISET T KQT R $X_0$ $Y_0$ $Z_0$
; optional quantity dump IN ISET T KPRIN I $[$IN$]$
; end of input data EN EN
If there is no IC
batch it is automatically assumed that the initial conditions are homogenous.
$\mathtt{KMET}$ | The key of the solution method. | |
---|---|---|
$=1$ | central difference metod (default) | |
$\mathtt{KOUT}$ | The key of the output to the binary file name.PLS . |
|
$=0$ | only check the input data | |
$=1$ | after each load case | |
$=2$ | after each cycle | |
$=3$ | only the final solution | |
$\mathtt{NINT}$ | The division of the integration step. The default value is $10.$ | |
$\mathtt{KTPR}$ | The key of test prints. | |
$=0$ | none | |
$=1$ | computation trace (recommended) | |
$=2$ | trace + displacement vector after each iteration | |
$=3$ | trace + reaction force vector | |
$\mathtt{NGD}$ | The order of numerical integration on the element, $1\le\mathtt{NGD}\le4.$ The default value is $\mathtt{NG},$ i.e., the value assigned to the element in the mesh processing. | |
$\mathtt{PENAL}$ | The spring stiffness for contact problems $[\text{N}/\text{m}^3].$ | |
$\mathtt{TSTEP}$ | The size of the integration step for the central difference method $[\text{s}].$ | |
$\mathtt{BETA}$ | The parameter of the special form of the Rayleigh dumping matrix $\mathbf{C}=\beta\mathbf{M}.$ | |
$[\mathtt{IN}]$ | The list of node numbers. | |
$\mathtt{IREC}$ | The record index number of the load case in the binary file name.SOL . |
|
$\mathtt{ISET}$ | The set index number. | |
$\mathtt{KPRIN}$ | The key of printing of nodal quantities in each integration step. | |
$=1$ | displacements | |
$=2$ | displacements and velocities | |
$=3$ | displacements, velocities, and accelerations | |
$\mathtt{KQT}$ | The key of initial conditions. | |
$=1$ | initial displacements | |
$=2$ | initial velocities | |
$X_0,Y_0,Z_0$ | The constant initial vector in the direction of global coordinate axes. | |
$[X]_0$ | The initial vector. The number of components (the length of the vector) must be the same as the number of degrees of freedom of the mesh. |