Obsah

name.iN

Program

HDYN

Format

; program control IP KMET KOUT 2*0 NINT KTPR NGD RP 3*0 PENAL TSTEP BETA

; optional first kind of initial conditions IC ISET T KQT R $[X]_0$

; optional second kind of initial conditions IC ISET T KQT I IREC

; optional third kind of initial conditions IC ISET T KQT R $X_0$ $Y_0$ $Z_0$

; optional quantity dump IN ISET T KPRIN I $[$IN$]$

; end of input data EN EN

If there is no IC batch it is automatically assumed that the initial conditions are homogenous.

Annotations

$\mathtt{KMET}$The key of the solution method.
$=1$central difference metod (default)
$\mathtt{KOUT}$The key of the output to the binary file name.PLS.
$=0$only check the input data
$=1$after each load case
$=2$after each cycle
$=3$only the final solution
$\mathtt{NINT}$The division of the integration step. The default value is $10.$
$\mathtt{KTPR}$The key of test prints.
$=0$none
$=1$computation trace (recommended)
$=2$trace + displacement vector after each iteration
$=3$trace + reaction force vector
$\mathtt{NGD}$The order of numerical integration on the element, $1\le\mathtt{NGD}\le4.$ The default value is $\mathtt{NG},$ i.e., the value assigned to the element in the mesh processing.
$\mathtt{PENAL}$The spring stiffness for contact problems $[\text{N}/\text{m}^3].$
$\mathtt{TSTEP}$The size of the integration step for the central difference method $[\text{s}].$
$\mathtt{BETA}$The parameter of the special form of the Rayleigh dumping matrix $\mathbf{C}=\beta\mathbf{M}.$
$[\mathtt{IN}]$The list of node numbers.
$\mathtt{IREC}$The record index number of the load case in the binary file name.SOL.
$\mathtt{ISET}$The set index number.
$\mathtt{KPRIN}$The key of printing of nodal quantities in each integration step.
$=1$displacements
$=2$displacements and velocities
$=3$displacements, velocities, and accelerations
$\mathtt{KQT}$The key of initial conditions.
$=1$initial displacements
$=2$initial velocities
$X_0,Y_0,Z_0$The constant initial vector in the direction of global coordinate axes.
$[X]_0$The initial vector. The number of components (the length of the vector) must be the same as the number of degrees of freedom of the mesh.