The total creep strain in percent in time $t$ for the specified stress $\sigma$ and temperature $T$ is expressed as $$\varepsilon_\text{tot}(t|\sigma,T) = \varepsilon_0\left(\frac{\varepsilon_m}{\varepsilon_0}\right)^{g(\pi)},$$ where $\varepsilon_0$ is the initial strain, $\varepsilon_m$ is the limit strain, and $g(\pi)$ is the hardening function.
The value of the initial strain depends on the material and is given as
The limit strain is defined as $$\varepsilon_m = \exp\left\{M_1+M_2\tanh\left[\frac{\ln(t_r)-M_3-M_4T}{M_5}\right]\right\}+100\frac{\sigma}{E(T)}.$$
The time to fracture $t_r$ is determined from $$\log(t_r) = A_1+A_2\log\left|\frac{1}{T}-\frac{1}{A_5}\right|+A_3\log\left|\frac{1}{T}-\frac{1}{A_5}\right|\log\left[\sinh(A_6\sigma T)\right]+A_4\log\left[\sinh(A_6\sigma T)\right].$$
The hardening function $g(\pi)$ is then defined as $$g(\pi) = \pi^N\left[\frac{1+\exp\left(-2\pi^{K(T)}\right)}{1+\exp(-2)}\right]^M,$$ where $\pi$ is the damage $\pi=t/t_r,$ $N$ a $M$ are material constants, and parameter $K$ is defined using constants $K_1$ and $K_2$ as $$K(T)=\exp\left(K_1+\frac{K_2}{T}\right).$$
The material constants $E_1$ to $E_3,$ $A,$ $B,$ $Q,$ $n,$ $B_1$ to $B_3,$ $N_1$ to $N_5,$ $A_1$ to $A_6,$ $M_1$ to $M_5,$ $N,$ $M,$ $K_1,$ and $K_2$ are specified in separate input files, see below.
The Bina model is activated by the parameter $\mathtt{KCRP}=pqr$ in the file name.iP
, where:
All materials used must be assigned to the elements using the file name.DAT
.
The material parameter files have the following structure:
* * Comments *
POCATECNI DEFORMACE $E_1$ $E_2$ $E_3$
PEVNOST PRI TECENI $A_1$ $A_2$ $A_3$ $A_4$ $A_5$ $A_6$
2B) $A$ $Q$ $B$ $n$
2C) $A$ $Q$ $n$ $B_1$ $B_2$ $B_3$ $N_1$ $N_2$ $N_3$ $N_4$ $N_5$
MEZNA DEFORMACE $M_1$ $M_2$ $M_3$ $M_4$ $M_5$
FUNKCE ZPEVNENI $N$ $M$ $K_1$ $K_2$
POCATECNI DEFORMACE
contains the constants for the calculation of the initial strain.2B)
contains further constants for the calculation of the initial strain; if $k_B\in\{1,3\},$ this block must be omitted.2C)
contains further constants for the calculation of the initial strain; if $k_B\in\{1,2\},$ this block must be omitted.PEVNOST PRI TECENI
contains the constants for the calculation of the time to fracture.MEZNA DEFORMACE
contains the constants for the calculation of the limit strain.FUNKCE ZPEVNENI
contains the constants for the calculation of the damage function.
The program checks, according to the specified values of $k_B,$ if each material parameter file contains — or does not contain — the blocks 2B)
and 2C)
. This prevents a possible error in the parameter $\mathtt{KCRP}$ in the file name.iP
or on the material
line in the file name.DAT
.
There is only one material $k_B=1$ used in the creep problem.
; KREST NLC NCYC KMOD KCRP KLARG KCNT IP 1 11 1 0 213 0 0 3*0 11*2 RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000 EN EN
number 1 mat.dat
There are three materials used in the creep problem. Let for the material number 1 be $k_B=3,$ for the material number 2 be $k_B=2,$ and the material number 3 be $k_B=1.$
; KREST NLC NCYC KMOD KCRP KLARG KCNT IP 1 11 1 0 233 0 0 3*0 11*2 RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000 EN EN
number 3 mat1.dat mat2.dat mat3.dat material 2 2 8 10 13 14:15 17:20 material 3 1 37 12 21:30 35:60
The sample material parameter file for a single material $k_B=1.$
************************************************************************ * * 15128.5 Z-89-6013 CSN 1.3.1979, (470-900/2.5E5) * * * QUANTITY UNIT * ---------------------------------------------- * Temperature [K] * Stress [MPa] * Initial strain, Limit s., Creep s. [%] * Time to fracture [h] * Creep strain rate [%/h] * * POCATECNI DEFORMACE parameters E(1) - E(3) * DOBA DO LOMU parameters A(1) - A(6) * MEZNA DEFORMACE parameters M(1) - M(5) * FUNKCE ZPEVNENI parameters N, M, K(1), K(2) * ************************************************************************ POCATECNI DEFORMACE 0.21425035E+6 -0.45038419E+6 0.19371094E+4 PEVNOST PRI TECENI -0.1840487E+2 -0.5906108E+1 0.7682633E+1 0.2298323E+2 0.6730000E+3 0.4000000E-5 MEZNA DEFORMACE 0.144927e+1 0.0E+0 0.0E+0 0.0E+0 1.0E+0 FUNKCE ZPEVNENI 0.26069593E+0 -0.80546546E+0 -0.51082559E+0 0.0