Obsah

Bina model

The total creep strain in percent in time $t$ for the specified stress $\sigma$ and temperature $T$ is expressed as $$\varepsilon_\text{tot}(t|\sigma,T) = \varepsilon_0\left(\frac{\varepsilon_m}{\varepsilon_0}\right)^{g(\pi)},$$ where $\varepsilon_0$ is the initial strain, $\varepsilon_m$ is the limit strain, and $g(\pi)$ is the hardening function.

The value of the initial strain depends on the material and is given as

  1. type 2a) \begin{align} \varepsilon_0 &= 100\frac{\sigma}{E(T)}\\ E(T) &= E_1+E_2\exp\left(-\frac{E_3}{T}\right) \end{align}
  2. type 2b) \begin{align} \varepsilon_0 &= 100\frac{\sigma}{E(T)}\left[A\tanh(B\sigma)\exp\left(\frac{Q}{T^n}\right)\right]\\ E(T) &= E_1+E_2\exp\left(-\frac{E_3}{T}\right) \end{align}
  3. type 2c) \begin{align} \varepsilon_0 &= 100\frac{\sigma}{E(T)}\left[A\left(\frac{\sigma}{\sigma_m(T)}\right)^{m(T)}\exp\left(\frac{Q}{T^n}\right)\right]\\ E(T) &= E_1+E_2\exp\left(-\frac{E_3}{T}\right)\\ \sigma_m(T) &= B_1+B_2\exp\left(\frac{B_3}{T}\right)\\ m(T) &= N_1+N_2T+N_3T^2+N_4T^3+N_5T^4 \end{align}

The limit strain is defined as $$\varepsilon_m = \exp\left\{M_1+M_2\tanh\left[\frac{\ln(t_r)-M_3-M_4T}{M_5}\right]\right\}+100\frac{\sigma}{E(T)}.$$

The time to fracture $t_r$ is determined from $$\log(t_r) = A_1+A_2\log\left|\frac{1}{T}-\frac{1}{A_5}\right|+A_3\log\left|\frac{1}{T}-\frac{1}{A_5}\right|\log\left[\sinh(A_6\sigma T)\right]+A_4\log\left[\sinh(A_6\sigma T)\right].$$

The hardening function $g(\pi)$ is then defined as $$g(\pi) = \pi^N\left[\frac{1+\exp\left(-2\pi^{K(T)}\right)}{1+\exp(-2)}\right]^M,$$ where $\pi$ is the damage $\pi=t/t_r,$ $N$ a $M$ are material constants, and parameter $K$ is defined using constants $K_1$ and $K_2$ as $$K(T)=\exp\left(K_1+\frac{K_2}{T}\right).$$

The material constants $E_1$ to $E_3,$ $A,$ $B,$ $Q,$ $n,$ $B_1$ to $B_3,$ $N_1$ to $N_5,$ $A_1$ to $A_6,$ $M_1$ to $M_5,$ $N,$ $M,$ $K_1,$ and $K_2$ are specified in separate input files, see below.

Input quantities

The Bina model is activated by the parameter $\mathtt{KCRP}=pqr$ in the file name.iP, where:

All materials used must be assigned to the elements using the file name.DAT. The material parameter files have the following structure:

* * Comments *

POCATECNI DEFORMACE $E_1$ $E_2$ $E_3$

PEVNOST PRI TECENI $A_1$ $A_2$ $A_3$ $A_4$ $A_5$ $A_6$

2B) $A$ $Q$ $B$ $n$

2C) $A$ $Q$ $n$ $B_1$ $B_2$ $B_3$ $N_1$ $N_2$ $N_3$ $N_4$ $N_5$

MEZNA DEFORMACE $M_1$ $M_2$ $M_3$ $M_4$ $M_5$

FUNKCE ZPEVNENI $N$ $M$ $K_1$ $K_2$

The program checks, according to the specified values of $k_B,$ if each material parameter file contains — or does not contain — the blocks 2B) and 2C). This prevents a possible error in the parameter $\mathtt{KCRP}$ in the file name.iP or on the material line in the file name.DAT.

Example

There is only one material $k_B=1$ used in the creep problem.

name.iP
; KREST NLC NCYC KMOD KCRP KLARG KCNT
IP  1    11   1    0   213   0     0  3*0  11*2
RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000
EN
EN
name.DAT
number 1
mat.dat

Example

There are three materials used in the creep problem. Let for the material number 1 be $k_B=3,$ for the material number 2 be $k_B=2,$ and the material number 3 be $k_B=1.$

name.iP
; KREST NLC NCYC KMOD KCRP KLARG KCNT
IP  1    11   1    0   233   0     0  3*0  11*2
RP 10*0 0 1 100 1000 10000 30000 80000 120000 160000 200000 250000
EN
EN
name.DAT
number 3
mat1.dat
mat2.dat
mat3.dat
material 2 2 8
10 13 14:15 17:20
material 3 1 37
12 21:30 35:60

Example

The sample material parameter file for a single material $k_B=1.$

15128_5.dat
************************************************************************
*
*          15128.5   Z-89-6013 CSN 1.3.1979, (470-900/2.5E5)
*
*
*            QUANTITY                                UNIT
*            ----------------------------------------------
*            Temperature                             [K]
*            Stress                                  [MPa]
*            Initial strain, Limit s., Creep s.      [%]
*            Time to fracture                        [h]
*            Creep strain rate                       [%/h]
*
*     POCATECNI DEFORMACE  parameters  E(1) - E(3)
*     DOBA DO LOMU         parameters  A(1) - A(6)
*     MEZNA DEFORMACE      parameters  M(1) - M(5)
*     FUNKCE ZPEVNENI      parameters  N, M, K(1), K(2)
*
************************************************************************

POCATECNI DEFORMACE
  0.21425035E+6
 -0.45038419E+6
  0.19371094E+4

PEVNOST PRI TECENI
 -0.1840487E+2
 -0.5906108E+1
  0.7682633E+1
  0.2298323E+2
  0.6730000E+3
  0.4000000E-5

MEZNA DEFORMACE
  0.144927e+1
  0.0E+0
  0.0E+0
  0.0E+0
  1.0E+0

FUNKCE ZPEVNENI
  0.26069593E+0
 -0.80546546E+0
 -0.51082559E+0
  0.0