Set | $\mathtt{KQT}$ | Quantity |
---|---|---|
MP | 1 | Material properties $[E,\alpha,\nu,\rho,\sigma_Y,Q_Y,\dot\varepsilon_c,\Phi]$ |
VV | 6 | Volumetric force $[Q_x,Q_y,Q_z]$ |
SV | 2 | Winkler’s foundation in the local coordinate system of the element’s face $[K_n,K_t]$ |
3 | Winkler’s foundation in the global coordinate system $[K_x,K_y,K_z]$ |
|
6 | Surface force in the normal direction to the element’s face $[q_n]$ |
|
9 | Surface force in the global coordinate system $[q_x,q_y,q_z]$ |
|
LV | 2 | Spring edge support in the local coordinate system of the semi-loof element’s edge $[K_{x_h},K_{y_h},K_{z_h},C_{y_h}]$ |
6 | Edge force in the local coordinate system of the semi-loof element’s edge $[l_{x_h},l_{y_h},l_{z_h},m_{y_h}]$ |
|
9 | Edge force in the global coordinate system $[l_x,l_y,l_z]$ |
|
NV | 1 | Nodal displacement $[u,v,w,\alpha\equiv\varphi_x,\beta\equiv\varphi_y,\varphi_z]$ |
2 | Spring in the general direction $[k_n,k_t,c_x,c_y,c_z]$ |
|
3 | Spring in the global coordinate system $[k_x,k_y,k_z]$ |
|
4 | Spring in the global coordinate system – symmetric stiffness matrix $[k_1,\dots,k_{m(m+1)/2}]$ |
|
6 | Concentrated force in the global coordinate system $[F_x,F_y,F_z,M_\alpha\equiv M_x,M_\beta\equiv M_y,M_z]$ |
|
GV | 1 | Nodal displacements for the entire mesh $[u_1,\dots,u_\mathtt{LSOL}]$ |
6 | Nodal temperatures for the entire mesh $[T_1,\dots,T_\mathtt{LT}]$ |
If $\mathtt{KQT}\le5$ the quantity holds for the whole computation and must be assigned in the first load case. If $\mathtt{KQT}>5$ the quantity holds only for the particular load case in which it was assigned.
Displacement (or temperature) field from the previous computation can alternatively be read directly from the binary file name.SOL
(or name.TEM
). For the particular form of the GV
set in this case see the file name.i2
.
Set | $\mathtt{KQT}$ | Quantity |
---|---|---|
MP | 1 | Material properties $[\lambda,\rho c]$ |
2 | Transient thermal resistance $[\beta]$ |
|
VV | 6 | Volumetric heat source $[\dot w]$ |
SV | 1/11 | Heat transfer by convection on the element’s face $[\alpha,T_o]$ |
2/12 | Heat transfer by radiation on the element’s face $[c,T_o]$ |
|
3/13 | Generic heat transfer on the element’s face $[c_1,c_2,c_3,T_o]$ |
|
4/14 | Heat flux on the element’s face $[\dot q]$ |
|
LV | 1/11 | Heat transfer by convection on the semi-loof element’s edge $[\alpha,T_o]$ |
2/12 | Heat transfer by radiation on the semi-loof element’s edge $[c,T_o]$ |
|
3/13 | Generic heat transfer on the semi-loof element’s edge $[c_1,c_2,c_3,T_o]$ |
|
4/14 | Heat flux on the semi-loof element’s edge $[\dot q]$ |
|
NV | 1/11 | Nodal temperature $[T,\Delta T]$ |
2/12 | Concentrated heat flux $[\dot q]$ |
|
GV | 1 | Nodal temperatures for the entire mesh – initial condition $[T_1,\dots,T_\mathtt{LSOL}]$ |
6 | Nodal temperatures for the entire mesh – default approximation $[T_1,\dots,T_\mathtt{LSOL}]$ |
|
AV | 6 | Computation control (see the file name.iB ) |
If $\mathtt{KQT}\le5$ the quantity holds for the whole computation and must be assigned in the first load case. If $\mathtt{KQT}>5$ the quantity holds only for the particular load case in which it was assigned. If there are two $\mathtt{KQT}$ values separated by a slash, the first value is used to prescribe the quantity for the whole process, while the second value is used to prescribe the quantity only for the particular load case.
Temperature field from the previous computation can alternatively be read directly from the binary file name.TIC
(renamed file name.TEM
). For the particular form of the GV
set in this case see the file name.iB
.