Obsah

Non-proportional stress-strain ratcheting

by Dr. René Marek

Problem description

Consider the rod shown subjected to cyclic non-proportional loading. Compute elastic-plastic response using directional-distortional hardening.

Material properties

$E=2.1\times10^5\text{ MPa},$ $\nu=0.3.$ Feigenbaum-Dafalias directional-distortional hardening model, type $\alpha$ with constant $c.$

$k_0\text{ [MPa]}$ $150$
$\kappa_1\text{ [MPa]}$ $10~000$
$\kappa_2\text{ [1/MPa]}$ $0.008$
$a_1\text{ [MPa]}$ $50~000$
$a_2\text{ [1/MPa]}$ $0.01$
$c\text{ [1/MPa]}$ $0.008$

Support

Clamped at $x=0, y=0.$ Sliding at $y=0.$ Statically determinate.

Loading

$u_y|_{y=20\text{ mm}}=(+20\ \mu\text{m}, -4\ \mu\text{m}),$ 2.5 cycles. Preload to $u_y|y_{y=20\text{ mm}}=18\ \mu\text{m}$ and hold. $\sigma_{xy}=\pm150\text{ MPa},$ 2.5 cycles.

Solution

Analytical solution of the proportional part and precise numerical solution of the second non-proportional part with $\mathtt{NSUB}=1000$ and $\mathtt{NINT}=5000$ are shown below.

$\varepsilon_{11}\times10^3$ $\sigma_{12}$ $k$ $\alpha_{11}$ $\alpha_{12}$ $\sigma_{11}$ $\varepsilon_{12}\times10^3$ $\varepsilon_p\times10^3$
$0$ $0$ $150$ $0$ $0$ $0$ $0$ $0$
$+50$ $0$ $145.807$ $70.480$ $0$ $367.834$ $0$ $3.2484$
$-20$ $0$ $142.436$ $-65.377$ $0$ $-335.642$ $0$ $6.8985$
$+50$ $0$ $139.447$ $67.179$ $0$ $339.292$ $0$ $10.6846$
$-20$ $0$ $136.976$ $-67.052$ $0$ $-334.450$ $0$ $14.4763$
$+50$ $0$ $134.904$ $67.356$ $0$ $332.374$ $0$ $18.3009$
$+45$ $0$ $134.904$ $67.356$ $0$ $227.374$ $0$ $18.3009$
$+45$ $+150$ $134.13$ $39.95$ $4.07$ $142.24$ $1.545$ $19.783$
$+45$ $-150$ $133.23$ $18.53$ $-4.24$ $61.17$ $-1.280$ $22.061$
$+45$ $+150$ $132.43$ $8.16$ $4.31$ $26.52$ $1.573$ $24.369$
$+45$ $-150$ $131.70$ $3.54$ $-4.34$ $11.44$ $-1.293$ $29.700$
$+45$ $+150$ $131.04$ $1.52$ $4.37$ $4.90$ $1.582$ $29.050$

Loading path and subsequent yield surfaces on the $\sigma$–$\tau$ diagram are shown below.

Loading path and subsequent yield surfaces on the $\varepsilon$–$\gamma$ diagram are shown below.

Stress-strain characteristics with visible relaxation of axial tension during shear is shown below.