Obsah

name.i5

Program

STR2 STR3

Format

; program control IP KLC 0 KOUT ILC 0 IEL1 IEU1 IEL2 IEU2 0 KPROB KGRAF KAR

; end of input data EN EN

Annotations

$\mathtt{KLC}$The key of load cases.
$=1$process all load cases
$=3$process selected load cases
$\mathtt{KOUT}$The key of output.
$=0$ displacements
$=1$ displacements and stresses on all elements
$=2$ displacements and stresses on selected elements
$=-1$strains on all elements
$=-2$strains on selected elements
$\mathtt{ILC}$The load case index, $0\le\mathtt{ILC}\le\mathtt{NLC}.$ The number of load cases $\mathtt{NLC}$ is determined automatically depending on $\mathtt{KPROB}.$
$\mathtt{IEL1},\mathtt{IEU1}$
$\mathtt{IEL2},\mathtt{IEU2}$
Element selection for output. For $\mathtt{KOUT}=\pm2$ only the elements $\mathtt{IE}$ in range $\mathtt{IEL1}\le\mathtt{IE}\le\mathtt{IEU1}$ and $\mathtt{IEL2}\le\mathtt{IE}\le\mathtt{IEU2}$ are processed.
$\mathtt{KPROB}$The key of problem type.
$=0$elastostatic
$=1$dynamic
$=2$nonlinear
$\mathtt{KGRAF}$The key of output for graphics.
$=0$output only to the protocol (values in integration points)
$=1$output only to the text file name.STR (values extrapolated to nodes)
$=2$output to both the protocol and the file name.STR
$=3$output only to the binary file name.STB in single precision (values extrapolated to nodes)
$\mathtt{KAR}$The integer quotient of arithmetic series used to select load cases, $\mathtt{KAR}\ge0.$ For $\mathtt{KLC}=3$ the value of $\mathtt{KAR}$ specifies the index of the last processed load case.

The program processes load cases according to the entered parameters in the following way:

$\mathtt{KLC}=1,$ $\mathtt{KPROB}=0,$ $\mathtt{KAR}=0$ or $1$all (regardless of $\mathtt{ILC}$)
$\mathtt{KLC}=1,$ $\mathtt{KPROB}=0,$ $\mathtt{KAR}>1$first, then every $\mathtt{KAR}$-th
$\mathtt{KLC}=1,$ $\mathtt{KPROB}>0,$ $\mathtt{KAR}=0$ or $1$first to $\mathtt{ILC}$-th
$\mathtt{KLC}=1,$ $\mathtt{KPROB}>0,$ $\mathtt{KAR}>1$first, then every $\mathtt{KAR}$-th, until $\mathtt{ILC}$-th
$\mathtt{KLC}=3,$ $\mathtt{KAR}\le\mathtt{ILC}$only $\mathtt{ILC}$-th
$\mathtt{KLC}=3,$ $\mathtt{KAR}>\mathtt{ILC}$$\mathtt{ILC}$-th to $\mathtt{KAR}$-th