Obsah

Hexahedra, BEAM56G1

Problem

Stability of a column

Mesh

element type nodes
1 56 1 2 3 4 5 6 7 8 21 22 23 24 25 26 27 28 29 30 31 32
2 56 5 6 7 8 9 10 11 12 29 30 31 32 33 34 35 36 37 38 39 40
3 56 9 10 11 12 13 14 15 16 37 38 39 40 41 42 43 44 45 46 47 48
4 56 13 45 15 16 17 18 19 20 45 46 47 48 49 50 51 52 53 54 55 56 

Boundary conditions

$u=v=w=0$ at node 24
$u=w=0$ at node 22
$v=w=0$ at node 56
$w=0$ at node 54

Computation

The unit end force is replaced with the equivalent surface traction as $$q_x=\frac{-1}{0.01\times 0.02}=-5000\text{ Pa},\quad q_y=0\text{ Pa},\quad q_z=0\text{ Pa}.$$

The initial stress matrix is then computed from the stress field obtained by the standard linear analysis.

The computation is executed with the following commands:

beam56g1.bat
rmd3 beam56g1.i1
rpd3 beam56g1.i2
srh3 beam56g1.i3
fefs beam56g1.i4
geo3 beam56g1.iG
heig beam56g1.iE
stab beam56g1.iS

Input

beam56g1.i1
;  NELEM NNOD ITED
IP   4    56   56
;  CRIT SCALE
RP 1.01   1
XY N 1:20 X 4*0 4*0.25 4*0.5 4*0.75 4*1
          Y 5*(0 0.02 0.02 0)
          Z 5*(0 0 0.01 0.01)
EL E 1:4 N =A 1:8 =A =B 21:32 =B
           =4A =8B =8A =16B =12A =24B
EN
EN
beam56g1.i2
;  KREST
IP   1
         ; E    α ν   ρ
MP 1 T 1 V 2e11 0 0.3 0
SV 1 T 9 V -5000 0 0 ; Fx = -1 N

AS 1 /M 1
  /B 0 N 24 /B 0 C 1 3 N 22     ; left end
  /B 0 C 2 3 N 56 /B 0 C 3 N 54 ; right end
  /S 1 E 4 S6

EN
EN
beam56g1.i3
;  KREST
IP   1
EN
EN
beam56g1.i4
;  KREST
IP   1
EN
EN
beam56g1.iG
;  ILC
IP  1
EN
EN
beam56g1.iE
;  KREST NROOT NITERX KTPR KEVP
IP   1     1      0     0    1
EN
EN
beam56g1.iS
IP 1
EN
EN

Output

beam56g1.oS
IP 1                                                                            
EN                                                                              
EN                                                                              


                              LOADING PARAMETERS
  0.348977E+04

                                * END OF STAB *
 TOTAL CPU: 00:00:00