Obsah

Mode superposition, BEAM53D2

Problem

Steady-state response

Mesh

element type nodes
1 53 1 2
2 53 2 3
3 53 3 4
4 53 4 5

Boundary conditions

$u=v=w=\varphi_x=\varphi_y=\varphi_z=0$ at node 1

Computation

In the mode superposition method we directly combine the eigenvectors neglecting the phase shift due to damping.

The computation is executed with the following commands:

beam53d2.bat
rmd3 beam53d2.i1
rpd3 beam53d2.i2
srh3 beam53d2.i3
fefs beam53d2.i4
hmot beam53d2.iM
heig beam53d2.iE
hmod beam53d2.iD

Input

beam53d2.i1
;  NELEM NNOD ITED
IP   4     5   53
;  CRIT SCALE ...
RP 1.01   1   8*0
 ; default values of cross-sectional characteristics
 ; A    Ik              Wk                Ieta
   2e-4 6.6666666666e-9 6.666666666666e-7 1.66666666666e-9
 ; Weta             Izeta               Wzeta              Px Py Pz
   3.33333333333e-7 6.66666666666666e-9 6.666666666666e-7  0  1  0
XY N 1:5 X 5*0:1 Y 5*0 Z 5*0
EL E 1:4 N 1 2  2 3  3 4  4 5
EN
EN
beam53d2.i2
;  KREST
IP   1
         ; E    α ν   ρ
MP 1 T 1 V 2e11 0 0.3 7800
AS 1 /M 1 /B 0 N 1
EN
EN
beam53d2.i3
;  KREST
IP   1
EN
EN
beam53d2.i4
;  KREST
IP   1
EN
EN
beam53d2.iM
;  KDIAG KPRIN
IP   1     0
EN
EN
beam53d2.iE
;  KREST NROOT NITERX KTPR KEVP
IP   1     10     0     0    0
EN
EN
beam53d2.iD
;  KOUT KDUMP KPRIN KKIN
IP   3    0     0     1
;  TEND DT
RP   0   0

VC 1 T 1
  ; directional vector
  R 0 0 1 0 0 0 4*(6*0)
  ; amplitude
  R 0.001
  ; ang. frequency
  R 25.698761
  ; damping
  R 10*0.1

; use the first term of Fourier's series
RS 2 T 1 I 1 0

; direction, amplitude, frequency, damping
AS 3 T 1   I 1 3   I 2 5   I 3 6   I 4 8

EN
EN

Output

beam53d2.oD
;  KOUT KDUMP KPRIN KKIN                                                        
IP   3    0     0     1                                                         
;  TEND DT                                                                      
RP   0   0                                                                      
                                                                                
VC 1 T 1                                                                        
  ; directional vector                                                          
  R 0 0 1 0 0 0 4*(6*0)                                                         
  ; amplitude                                                                   
  R 0.001                                                                       
  ; ang. frequency                                                              
  R 25.698761                                                                   
  ; damping                                                                     
  R 10*0.1                                                                      
                                                                                
; use the first term of Fourier's series                                        
RS 2 T 1 I 1 0                                                                  
                                                                                
; direction, amplitude, frequency, damping                                      
AS 3 T 1   I 1 3   I 2 5   I 3 6   I 4 8                                        
                                                                                
EN                                                                              
EN                                                                              

                    RIGHT-HAND SIDE ASSIGNED
                    DAMPING INCLUDED


                            SUM OF REACTIONS
 -0.1353409505777549E-07  0.7209223447460681E-09 -0.1101235522045654E+01


                                REACTIONS
     1  -0.13534E-007   0.72092E-009  -0.11012E+001
     2   0.00000E+000   0.00000E+000   0.00000E+000
     3   0.00000E+000   0.00000E+000   0.00000E+000
     4   0.00000E+000   0.00000E+000   0.00000E+000
     5   0.00000E+000   0.00000E+000   0.00000E+000


                    AMPLITUDE OF THE STATIONARY SOLUTION


                    TIME T =  0.000000E+00 [s]

                    U [m]      V [m]      W [m] ALPHA [rad] BETA [rad]

                   DISPLACEMENT
     1   0.00000E+000   0.00000E+000   0.10000E-002
     2   0.84588E-016   0.11155E-015   0.10530E-002
     3   0.64241E-016  -0.26857E-016   0.11796E-002
     4  -0.35034E-016  -0.18142E-015   0.13409E-002
     5  -0.90682E-016  -0.34390E-015   0.15122E-002

                   VELOCITY
     1   0.00000E+000   0.00000E+000   0.25699E-001
     2   0.21738E-014   0.28667E-014   0.27061E-001
     3   0.16509E-014  -0.69020E-015   0.30314E-001
     4  -0.90034E-015  -0.46623E-014   0.34460E-001
     5  -0.23304E-014  -0.88379E-014   0.38863E-001

                   ACCELERATION
     1   0.00000E+000   0.00000E+000   0.66043E+000
     2   0.55864E-013   0.73671E-013   0.69544E+000
     3   0.42426E-013  -0.17737E-013   0.77904E+000
     4  -0.23138E-013  -0.11982E-012   0.88557E+000
     5  -0.59889E-013  -0.22712E-012   0.99873E+000

                                * END OF HMOD *
 TOTAL CPU: 00:00:00